On The Successive Projections Approach
Leasb-Squa’f:s Problems
by
J.E. Dennis, Ied

and

Trond Steihaug?

Technical Report 83-18, August 1983
(Revised February 1985)

IMathematical Sciences Department, Rice University, Houston, Texas 77251. Research sponsored by DOE DE-
AS05-82ER13016, ARO DAAG-29-83-K-0035, NSF MCS81-16779. This work was supported in part by the International
Business Machine Corporation, Palo Alto Scientific Center, Palo Alto, CA.

2Statoil, Stavanger, Norway and Mathematical Sciences Department, Rice University, Houston, Texas 77251.
Research sponsored by DOE DE-AS05-82ER13016, ARO DAAG-29-83-K-0035, This work was supported in part by the
International Business Machine Corporation, Palo Alto Scientific Center, Palo Alto, CA.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
FEB 1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

On the Successive Proj ections Approach to L east-Squar es Problems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 29
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

In this paper, we suggest a generalized Gauss-Seidel approach to sparse linear and
nonlinear least-squares problems. The algorithm, closely related to one given by Elfving
(1980), uses the work of Curtis, Powell, and Reid (1974) as extended by Coleman and
Moré (1983) to divide the variables into nondisjoint groups of structurally orthogonal
columns and then projects the updated residual into each column subspace of the Jacobian
in turn. In the linear case, this-procedure can be viewed as an alternate ordering of the
variables in the Gauss-Seidel method. Preliminary tests indicate that this leads quickly to
cheap solutions of limited accuracy for linear problems, and that this approach is promis-
ing for an inexact Gauss-Newton analog of the inexact Newton approach of Dembo, Eisen-
stat, and Steihaug (1981).

Key words

Sparse nonlinear least squares, inexact Gauss-Newton, finite-difference Jacobians, SOR
iteration.

1. Introduction

The purpose of this paper is to suggest a generalized group Gauss-Seidel approach to
sparse least-squares problems that appears in preliminary tests to be useful in obtaining
cheap solutions of limited accuracy. For nonlinear problems, the approach combines the
work on linearization of Coleman and Moré (1982), (1983) developing ideas of Curtis,
Powell, and Reid (1974) with the work on inexact Newton methods of Dembo, Eisenstat,
and Steihaug (1982) and Steihaug (1980). This amalgam leads here to an especially con-

venient implementation of the inexact Gauss-Newton method suggested in Section 3.

The basic idea is simple. If we apply the methods of estimating sparse Jacobian
matrices to group the columns of a coefficient matrix, then each group of columns is mutu-
ally orthogonal in their zero/nonzero structure regardless of the particular values of the
nonzero entries. This has the advantage of leading for each group of columns to smaller
cheaper least-squares problems unaffected by conditioning. The idea is to cycle through

these groups solving each time with the right-hand side updated as in iterative refinement.

These graph-theoretic algorithms actually partition the columns of the coefficient
matrix 4 into disjoint groups. Notice that there is no reason to want nonintersecting
groups of columns, and it will be interesting in our context to consider overlap between
groups. We report some experiments in Section 4 with a simple heuristic scheme for over-

lapping orthogonal sets of columns and for groups whose normal matrices are tridiagonal.

In the nonlinear case, there seem to be diagnostic advantages to maximal overlap in
the computation of finite-difference Jacobians for inaccurate residuals. This is a poten-
tially useful point that has not to our knowledge been pointed out and applies equally in
the solution of square systems of nonlinear equations. It would require no additional vector
function evaluations to use a different perturbation for a given variable or column for each
group to which it belongs. These values could then be used heuristically to refine the par-

tial derivative estimate and estimate its accuracy. In Section 4, we give some evidence to

support the obvious conjecture that overlapping orthogonal sets of columns is helpful in

the nonlinear case; although it does not seem worth the extra arithmetic in the linear case.

It is in order to disclaim that we bypass the effects of ill-conditioning by using any of
the grouping strategies suggested here; although, we may make less use than factorization
techniques of extended precision in obtaining a given accuracy. It is true that some of the
subproblems we solve are unaffected by conditioning because they are diagonal, but a prob-
lem with two nearly-dependent columns shows what happens in the ill-conditioned case and
illustrates the algorithm in residual spaée. We first project the right-hand side, say 7°, onto
the subspace spanned by the first column a;. Now we subtract from 7° the part of the resi-
dual accounted for by this projection, and then project the new residual ! onto a;. The
algorithm repeats the process and the reader will see that in order to reduce to an accept-
able level the part of the residual that can be accounted for by a linear combination of a,
and a,, we will need more iterations for a small angle between a, and a,. If a, were orthog-
onal to ay, then one projection onto each would suffice to reduce the residual as much as

possible. This is exactly the feature that we are exploiting within each column group.

Since our algorithm is based on convenient column groupings, the reader might be
tempted to think of this as a disadvantage over row-oriented schemes for large least-
squares problems. This is not the case either here or in the nonlinear equations problem
for that matter. See Coleman and Moré (1983), p.208, for a discussion that just the oppo-
site is likely to be the case. There are a host of schemes that can be used to adapt the
ideas here to any segmentation of the problem into groups of rows with the elements in

each segment stored columnwise for which the corresponding rows of the residuals can be

calculated separately.

In Section 2, we will present the algorithm for the linear problem and show that it
generalizes the group SOR method in the sense that it is that method for the normal equa-
tions of an extended linear least-squares problem. This observation will aliow an easy con-
vergence proof, even in the singular case, using results from Keller (1965). Section 3 is a

discussion of the nonlinear least-squares problem that combines the algorithm of Section 2

applied to the linearized problem with the inexact Gauss-Newton approach as a guide to
the accuracy required in solving the linearized problems. Section 4 presents some numeri-
cal results for several heuristic column grouping schemes as well as for the associated ord-

erings of the columns for point SOR.

2. The Algorithm for the Linear Least Squares Problem

Let A be an m by n real matrix, m2n, b&€R™, and consider the least-squares problem

min {4z — b llz.

TeR™ 2 (2'1)
In order to illustrate our algorithm, assume that the columns of 4 are divided into g groups
41, Az, . . ., Ay, where 4; is a m by n; submatrix and 4; may share columns with 4;. Let

7,€R™, 1,€R™ . . ., ,€R™. The least-squares problem (2.1) can now be written as:
min §I14,7,+42T2+... +4,z,—blla: ,€R™, i=1,2,...,g}. (2.2a)

Note that (2.2a) is really an m by n=n;+n,+... +n, least-squares problem which we will

denote using boldface type as:

min || Ax —bllz,
x€R® 2 (2'2b)
where A=(4;l42l...144) is an mxn matrix and x=(z,,75 .. .,z,)" is a n vector. Clearly, A

has exactly the same set of distinct columns as 4 divided into the same groups, but it will
be useful that we can ignore overlaps if we view the 4; as column groups of A. It will also be
convenient to have the notation Z;€R™ and T,€R™ to denote respectively the vectors
obtained by starting with the n or n zero vectors and placing the nonzero entries of z; in
the positions corresponding to the column indices in 4 or A of 4;. Thus, given either
XE€R®, or 2y, 22, . . ., Z, With each 7,€R™, we can define z€R™, z=T;+Tp+ - - +T, and
write

Az=AT\+AT+ - -+ +ATg=A\2+Aa22+ - +Ag2,

or

x=X;+Xp+ - - - 'Fi-g, AX=A—X-1+AT.2+ s +A-i-g=A1$1+A222+ cee +Ag:c,

Suppose we have an approximation z* to a solution z' to (2.1), and we divide z* into
=5, z§,. .., 7§ as above. (This division will not be unique for components corresponding to

column overlaps.) Then (2.2) suggests the following successive replacements iteration.

FOR i=1,2,...,g DO
Solve for zf*!: min{ IIi:A,#‘” + é AjZi-blly : TFHeR™.
i=1 =i+l
This is a method of projections [Householder (1964)], and for the special case of non-
overlapping column groups, i.e., for formulation (2.2b), this particular iteration was sug-
gested by Elfving (1980). We will see easily below that this is group Gauss-Seidel [Young
(1971),p.438] on the normal equations for (2.2) and so it is a generalized group Gauss-
Seidel for (2.1). Bjérk and Elfving (1979) and Elfving (1980) have pointed out that in this

form of the Gauss-Seidel iteration, we do not need to explicitly form the normal equations.

Let s* be the step or correction, let 7% = Az* — b be the residual, and notice that

A1If+1 + é AjIj—b = Als'f+1"‘.

j=2
So we rewrite the iteration:

FOR i=1_2,...,9 DO
Solve for s¥ : min § ll4;sf + r¥*6-1/4) . FeR™ §;
Update the residual: 75+¥9 = p*+G-1)/g 4 g5k

The new approximate solution is now

! = If'*'f. i=1,..g; T+l = é -'ff“.

i=1

We complete this section by stating the general algorithm with relaxation factors and
proving that it converges. In Section 4, we will discuss termination criteria and storage
requirements. We will want to assume that each 4; has full rank. This can be done without

any loss of generality, since any linearily dependent group of columns can be split into

smaller groups of linearily independent columns by making each column a group by itself, if

necessary. Clearly, we can assume that there is no zero column, since such a column can

be dropped from 4 without changing the least-squares problem.

Subdivide 4 into g groups. (Each 4; has full rank, i=1,2, - - - ,g.)
Choose 10, i=1, - - - ,g.

Compute ¥=4z%-b. (Choose 0<w;<2, i=1,2, - - - ,g.)

FOR k=0 STEP 1 UNTIL Convergence DO

FOR i=1 STEP 1 UNTIL g DO
st = —(ala)] 6
Ve = ke G-1/g 4 gy o
259 = xk+(i-1)/g + wigf;

Check for Convergence.

Theorem 2.1: Let the columns of 4 be divided into g groups 4;, - - -, 4, and let each 4;
have full rank. Let {z*} be generated by the above algorithm with any choices 0<w;<2, and

any 2J€R™, i=1,2, - - - ,g. Then {z*} converges to z', a solution to the least-squares prob-
lem (2.1).

Proof: We will show that the algorithm is the group SOR iteration on the normal equations
for (2.2). We will then apply a result of Keller (1965) which proves convergence for the
group SOR method applied to positive semi-definite systems. This will give convergence of

§x*} and hence of {z¥} and of {Zf} for everyi. But then {z*} converges since it is just

D=

i=1
We now state the result of Keller (1965) for completeness. Let G be a real symmetric

matrix of order n of the form

G=D+E+ET (2.3)
and let ¥ be any real nonsingular matrix such that

N=W'D+E (2.4)
is nonsingular. Let f be any vector for which the system

has a solution. Consider the iterative method

NT*l = (N=G)z* = f (2.6)

where 20 is an initial guess of a solution of (2.5). The following lemma is a part of Corollary

2.1 of Keller (1965).

Lemma 2.2. Let G be a symmetric positive semidefinite matrix of the form (2.3) and let #
be nonsingular such that the matrix N in (2.4) is nonsingular. Let (2.5) have a solution
and let

P=W-D + (F-'D)T - D

be positive definite. Then for every z° the sequence §z*} of (2.6) converges to a solution of

(2.5).

It will be useful to let G;=A4; be the (i,j) block of the n by n Gram matrix, G=ATA.

Define
0, A . +i/, R =
=+ % o j=12 g and 2= PB4 T o
p=0 =1 =1
First we need that

P = gV,
We will prove this by induction on k+i/g in steps of 1/g. By definition, the statement is

true for k+1i/g=0. Now assume that the statement is true for some k+(i—1)/g 2 0. Then
kg — k+(i-1)/g 4 GJiA-;Sf = Ak+G-1)g _ p o thf
= A[ZF+0-D4 4 o FF] — b = AzE+V9—p,
Now,

Gt — 2] = wust = —wAT[AHEs o]

i—1
= - wi[ElGﬁxf“ + iG,,:Lf - A{b],
]=

j=t

which becomes:

j=i+

Cuzk*! + wi[icﬁxf“ b % Gyaf] + (o 1)6uzt = ol
When w;=w,i=1,2,...,g this ithhe standard form given on p. 438 of Young (1971) of the
group SOR method applied to Gx=ATb. To apply Keller’s result, we write G=D+E+ET
where D=(C;;) is the nxn block diagonal of ¢, and E=(Cy;) is the nxn block strict lower
triangle of G. Let ¥ be the nxn block diagonal matrix whose ith block is w; times the

n;xn; identity matrix. Now we rewrite the iteration as

Dx**! + W[Ex**! + ETx*] + (W-I)Dx* = WATb
(D+WE)x**! + [W(D+ET)-D]x* = WATS.
Since no w;=0, we can multiply through by ¥~!, set N=W~-1D+E, and obtain
NxF+! 4+ (G—N)x* = ATY,

In order to complete the proof, we only need that N is nonsingular and that
(RW~'—I)D is positive definite. Observe that, since each 4; has full rank, D is positive
definite. It follows that ¥~'D is nonsingular and so N is also. In fact, F~! is blocked into
constant diagonal matrices so that 0<w;<2 ensures that (2#~!—I)D is symmetric and posi-

tive definite.

3. The Inexact Gauss-Newton Approach

We now consider the algorithm for the nonlinear least squares problem. Let

F:R*» R™ mz2n,andF = (F, ..., F,)T,
and define

1
o(z) = 5 F(2)'F(z).
Then the nonlinear least squares problem is to find z* so that for some £>0,
o(z") £ p(z) forall liz—z'll < &. (3.1)
The simultaneous solution of n nonlinear equations in » unknowns may be viewed as solving
(3.1) where m=n. For small-residual sparse problems, the Gauss-Newton method is very

attractive. It starts with z° and generates a sequence of iterates § z* } as follows:

FOR k=0 STEP 1 UNTIL Convergence DO
Solve for s*: min{ i| F*(z*)s + F(z*)ll,: s € R* } ; (3.2)
Set zt+! = 2* + £

If mxn is large, solving the linearized problem (3.2) may require the techniques men-

tioned above for (2.1).

If we use an iterative method to solve the linearized problem, then it is important to
know how accurately it must be solved in order to not impede convergence. We define the
Inezact Gauss-Newton algorithm for a given real non-negative sequence §6;} and starting

point z° as follows:

FOR k=0 STEP 1 UNTIL Convergence DO
Find some approximate minimizer s* of (3.2) so that

[P (5)TrH
[F”(z*)TF (%)l

Set zt*! = zb4 sk

£ 7 where * = F(zbt)+F (*)s% (3.3)

where |I'll is a vector norm or a consistent matrix norm. Let z° be a solution of (3.1) and

define the norm llylle = IIF*(z")'F*(z")yll. We will assume in this section that:

A.1. F is continuously differentiable in an open neighborhood 2 of z*;
A2 F(z")YF(z") = 0;
A.3. F’(z") has full rank;

A.4. There exists y20 so that for zeQ) ,
WF (z)—F ())TF () £ yliz—2'll. (3.4)

Notice that A.2 is somewhat redundant since we are assuming that z* solves (3.1). Also, if

the Jacobian matrix is Lipschitz continuous at z', i.e., there exists L 2 0 so that for z€Q,
IF“(z*)—F (2)ll; € Lllz—2"ll,;

then there exists 720 so that assumption A.4 holds in the 3 norm. Notice that ¥=0 for

zero-residual problems. The following theorem relates §{7,} to the speed of convergence of

E

Theorem 3.1: Assume that

y+n(l+y) <r<1 (3.5)
for ¥ from (3.4) and 0 < 8, £ 7 from (3.3). Then there exists some £>0 for which
llz~z'|l.< & implies that the sequence of inexact Gauss-Newton iterates § z* } is defined
and converges at least linearly to z* in the sense that

zE+1—2'|ls < 7llzE—2"(s.
Proof: Let

p = 2max § IF ()T, IF(z*)TF(z")) "1 } (3.6)
and let §>0 be so that

(1+u8) [17[1+7+(,u.+1)6]+7+p.6] sT.
This can be done in view of (3.5). Define

6(z) = F'(2)TF(z), ¢ = F(z")F(z").
Choose £>0 so that if liz—z'lls £ &, then IG}(z)Il £ w, IG'=CEMI £ 6, WF (@)l £ u,
and |IF(z*)—F(z)—F (z)(z'-=z)Il £ Sliz—z'll. . This can be done in view of (3.6) and the

assumptions A.1 and A.3. Let z* be the new inexact Gauss-Newton iterate, i.e. z* satisfies

||F'(x)fr|1
IF” (2)TF ()l

Consider

<7, wherer = F(z) + F'(2)s, z2*=1z2 + s

G (z*-2") = [(C'-G)G'+I] [F'(z)r — (F (z)-F'(z"))TF(z")
+ F () (F(z")-F(z)—F (z)(z'-2))]

Taking norms yields
lNz*—z'll = [1 + He(z) ™ nc*—c(x)u}
X [IIF’(::)TTII + HF (2)=F ())TF(I+1IF (z)T1] HF(x')—F(x)—F’(r)(:c'——:r)lI]

< (1+ud) [nIIF’(x)TF(z)II+7Ilx—x'll--!—,udllx—-x'll-])

Consider

10

F(z)TF(z) = (F(2)-F (2"))F(z") - F"(2)(F* (")~ F(2)-F" (2)(z'~2))
- (G(z)-6*)(z'-2)-CG*(z"-2) .
Taking norms,

WP (z)TF(z)ll £ yliz* -zl + ubllz’—zlls + Sliz*—zll. + liz*—z]ls.
So

lz*—2z'lle £ (1+pd) [17[1+7+(p.+1)6]+7+/.1.5] Hz—z'lle £ 7liz—2"lls.

If ¥ = 0, then the inexact Gauss-Newton method is closely related to the inexact
Newton method of Dembo, Eisenstat, and Steihaug (1982) and the inexact quasi-Newton
method of Steihaug (1980). In the case when ;= 0, this theorem relaxes the Dennis
(1977) conditions for convergence of the Gauss-Newton method. Furthermore, if F is twice
continuously differentiable, then we can apply the standard Ostrowski Theorem to the

Gauss-Newton method as in Ortega (1972). Now we will show that if the assumptions in the
standard Ostrowski Theorem are satisfied, then (3.4) holds.

In the following discussion, let F be twice continuously differentiable in an open neigh-'

borhood Q containing z°. For z sufficiently close to z°, A.3 lets us define

V@ = 2 - [P E)] P EFE).
Then the derivative of N exists, is continuous in a neighborhood of z* and
V@) = - [FETrE)] s
where
S = f)lFi(x')VzF.;(z')
i=
(See 8.1.8 in Ortega, 1972, and Dennis, 1977.) Recall that the Gauss-Newton method is
zF*! = N(z*) and z’ is a point of attraction of the the Gauss-Newton iteration if
p(N"(z')) < 1 where p(') is the spectral radius of the matrix (see 8.1.7 in Ortega, 1972).
Define the function h:(J-R™ by

h(z) = (F"(z)-F (2")F(z).
The assumption that F is twice continuously differentiable in an open neighborhood of z*

11

and the assumption A.2 give h’(z") = S. Assume for some positive § we have
p(N’(z*))+6 S 7 < 1. Choose a norm |I'l| so that |IN“(z°)7Il £ p(N’(z"))+6/2. We can find
a vector norm that is consistent with the chosen matrix norm, and choose a neighborhood

of radius & so that for all llz—z'|l £ £ we have

Ih(z)—h(z") ~ k' (z") (=2 < % llz—2"lle
This can be done since h is continuously differentiable. Consider

h(z) = k' (z')z-2") + h(z)-h(z") - h’(z")(z—2")
and note that h*(z")(z—2") = —N’(2")[F"(z")"F"(z")(z—2")]. Taking norms yields

W(F (z)-F ()P = IR(z)l < 1187 (") (z—2)I + IIh(z)—h(z")—R"(2") (z—2")II

< [lw'(x‘)’n +%] liz—z"ll
< (p(N"(2")+6) llz—z'lls £ 7 liz—2"ls

which shows (3.4).

In the inexact Gauss-Newton approach, we ignore the specific method we are using to
find an approximate minimizer s* of (3.2). If F is sparse, then as in Curtis, Powell, and
Reid (1974), and Coleman and Moré (1982), (1983), we may group the columns of F so
that the columns in each group are mutually orthogonal vectors. We note that a column
can be in several groups. The columns F* (2%); in group i may be approximated by finite
differences AF(z*); with only one extra value F(z*+v;), where v; is an appropriate linear
combination of the corresponding standard unit vectors. For 5;€R™, let SER™ be con-

structed as in Section 2. This suggests the following cycle in the inner loop:

12

For given ¥, let 7* = F(zt), y* = z*;
Inner loop cycle:
FOR 1i=1 STEP 1 UNTIL g DO
Compute AF = F”(z*); or AF(z*);;
Solve for s¥: min{ll4¥s,+r5+6-1/), . 5.€cR™};
Set TE+V9 = p+(-1/9 4 o gk
Set yk+i./g - yl:+(i-1)/g s 05{“;
Check termination (3.3).

The next iterate is now zt*! = y¥*¢ € R™ where c is the number of cycles, which
corresponds to terminating the inner iteration after ¢ sweeps through each of the column
groups. The least-squares problem (3.6) is trivial to solve when the columns in this group
are mutually orthogonal. This especially convenient way to group the columns has been

discovered independently by Coleman (1984).

If c>1, then the above inner loop cycle requires either recomputing F*(z*); or AF(z*);
when needed, or storing F’(z*) or AF(z*). An alternative approach recomputes the Jacobian
matrix of one particular group at a time and updates the nonlinear residual. This would

suggest the following nonlinear substitution method:

Given z°% compute F(z°)

FOR k=0 STEP 1 UNTIL Convergence DO

FOR i=1 STEP 1 UNTIL g DO
Compute A¥*(-1/8 = pr(g+G=1)/8), or AF(g5+6-1)75),
Solve for sf : min{|i4¥*G-1/9g, 4 F(2E+6-1/))1, : 5;,€R™Y;
Set z5+V9 = gE+(-11 4 ¢y

Check convergence.

4. Numerical Results

In this section, we describe two column grouping strategies to be used with the algo-

rithms given in Sections 2 and 3, and we present some numerical results for the Duff and

13

Reid (1979) sparse least-squares test problems. We begin with a discussion of the prob-

lems.

4.1. The Test Problems

These problems are specified only in their sparsity structures which come from adjust-

ment of survey data (Matrix 28 to 32 in the test bed).

Problem 1: A is 219 by 85 and the survey pattern is from Holland.

Problem 2: A is 958 by 292 and the survey pattern is from United Kingdom.
Problem 3: A is 331 by 104 and the survey pattern is from Scotland.
Problem 4: A is 608 by 188 and the survey pattern is from England.

Problem 5: A is 313 by 176 and the survey pattern is from Sudan.

The specific problems used here were found by generating the nonzero matrix elements
randomly in the interval (-1,1) and the components of a solution vector z randomly in the
interval (0,1). The righthand side b was found by computing b=Az. The nonlineaf problems
were found by replacing z; by x?, i.e., component i in F is

Filz) = gA,-jx,?‘ ~b;
Thus, our broblems have zero residuals at t}ie solution. We approximate all derivatives by

finite differences in these tests.

4.2. The Column Grouping Schemes

We have already mentioned that one grouping scheme is based primarily on the ideas
of Curtis, Powell, and Reid (1974) as expanded and improved by Coleman and Moré
(1983). A FORTRAN code found in Coleman and Moré (1982) furnished our first pass par-
titioning the columns of 4 into disjoint groups. We will refer to this work as ‘CM’. In Sec-
tion 1, we argued that there could be some advantages to allowing the groups to overlap in
some columns. In our tests, we used the following heuristic to expand each group in turn.

To expand a given group, we first mark all columns that have a nonzero element in the

14

same row position as some column in the group. This identifies the columns that can not be
added to the group. We then add one unmarked column to the group and add to the set of
marked columns all columns that have a nonzero row element in the same position as the
column that was added to the group. This process is then repeated until no columns are

left unmarked.

Finally, let 4; denote a resufting submatrix of columns q; of 4, j€I;, then ATA; is a diag-
onal matrix where the diagonal elements are the squares of the l,-norms of the columns, so
A; has full rank, as we required in Theorem 2.1. As an example, we present in Table 1 the

results of this scheme applied to Problem 3.

Number of Columns
Group | CM Expanded
1 25 25
2 25 25
3 25 25
4 20 23
5 8 25
6 1 25

Table 1: Groups in Problem 3

We note that when the groups are expanded, for the last groups the increase in number of
columns is larger than for the first few. This is to be expected for most sparsity structures

by the way the methods of partitioning the columns work.

We also considered an expansion of the groups of columns beyond mutual orthogonal-
ity to the case where the normal equations for the least-squares subproblems are banded.
In particular, we used the following sequential heuristic algorithm to group the columns so
that Al4; is tridiagonal. Initially, the columns are ordered according to some criteria like
the incidence degree ordering. Choose the first column, mark it, and let all other columns
be unmarked. This will be our first column in the group. Choose the first of the unmarked
columns that have a nonzero element in a same row position as the first column and mark

all columns that have an element in any same rowposition as the first column. This new

15

column is our next column in our group. This process is now repeated until a column has
no unmarked columns with an element in any same rowposition. At this point, either all
columns are marked or there are an unmarked column. Choose the first unmarked column
and continue the process until all columns are marked. We have now generated one group
of columns so that the the normal matrix 474, is block tridiagonal. Columns in different
blocks in the same group are orthogonal. Unmark all columns except the columns already
in a group. Repeat the process by chosing the first unmarked column. We illustrate this

grouping strategy on Problem 3.

Number of
Group | columns blocks
1 45 5
2 41 9
3 17 11
4 1 1

Table 2: Groups in Problem 3

4.3. Storage Requirements

It is of interest to compare the storage requirements of the algorithm of Section 2
applied directly to these problems to the requirements of a very good package for sparse
symmetric and positive-definite systems applied to the normal equations. In the following
table, columns 4 and A”4 give the storage required for the real nonzero elements in 4 and
the lower triangular part of A7A, as well as the associated integer pointers when we use the
storage scheme of the Harwell testbed. Column L gives the storage requirements for the
Yale Sparse Matrix Package (YSMP) [Eisenstat et al (1982)] to store the lower triangular
factor of ATA.

16

Storage Requirement

Problem | m = A ATA L

Real Int | Real Int | Real Int

1 219 85 | 438 524 304 390 | 520 642

2 958 292 | 1916 2209 | 1250 1543 | 2568 2497

3 331 104 | 662 767 435 540 | 774 812

4 608 188 | 1216 1405 796 985 | 1625 1609

5 313 176 | 1557 1734 | 1485 1662 | 1593 1210
Table 3: Storage

For our scheme, if AT4; , i=1,2, - - - ,g are diagonal matrices, we do not need the vec-

tor s explicitly. Instead, when we compute the components of AJ7¥+@-1/, we alsa compute
the components of s¥ and accumulate the innerproduct (477%+¢-1/9)"s¥ Hence the only
storage that is needed is the original data 4, and b (overwritten by 7**¥9), and the solution
vector z plus some additional pointer storage for the groups. If 474; ,i=1,2, - - - ,g are tridi-
agonal, then we need the LDLT factorization of the tridiagonal matrices and the vector sf.
For the inexact Gauss Newton method, we need to store the Jacobiah matrix. For the non-
linear substitution method, we need only one extra vector of length m if the columns of the-
Jacobian matrix or its approximant in each group have no elements in the same rowposi-

tions.

4.4. Numerical Experiments

Now we briefly discuss the termination criteria that we use. From the definition of
7+/9 and the choice of s¥, we have
49| B= (irE+G-1V0) 8 + 20, (AT G-00)Tst + wF(ATAisE) st
= I+ G018 + o, (2—w,) (@I 6-D9) sk

The major work required to calculate the l;-norm of the residual is an extra innerproduct
since 4J7%+6-1)/9 is already computed as in Subsection 4.3. Since we want to compare
different algorithms, we need to base our stopping criteria on a monotonically decreasing

sequence. This suggests the following termination rule:

17
[1rk+V9)|,
——pe—— % &, 4.1
17011z (4.1)
In the inexact Gauss Newton method, we base the termination rule on the residual A7z in
the normal equations. We note that this costs one matrix-vector product per iteration. We
terminate the inner loop cycle when (3.3) holds. For the nonlinear problems, the outer loop

is terminated when

IF ()]
TRE T

As explained above, one grouping scheme begins by using CM graph coloring to parti-

(4.2)

tion the columns of 4, and then we use the heuristic strategy to expand the groups.
Further, to terminate the iteration to solve the linear problem, we use (4.1). Table 4 com-
pares the CM grouping to the expanded groups that ‘overlap’. The entries in the tables
are: in the column marked ‘it’ for iterations, the numbers kg+i in the notation from Sec-
tion 2 of diagonal least-squares problems solved; we also include in the column marked
‘vup’ the total number of variables that were updated. Since the block matrix A74; is diago-
nal, the CM grouping is an point SOR using the CM grouping as the ordering. The number

of variables updated is therefore the number of point SOR corrections. In Table 4, we

choose w;=1.
Number of least squares problems solved
Problem | g e=.1 e=.01 £=.001

Overlap CM Overlap CM Overlap CM

it wvwp it wvupl| it wp it wvup | it vup it wvup
1 418 188 8 170 | 19 449 19 408 | 35 825 3 727
2 69 633 9 505| 22 1524 23 1166 | 39 2713 41 2042
3 69 223 9 17928 690 28 511 | 86 2122 86 1506
4 6{9 411 9 321} 24 1092 31 987 | 52 2362 68 2160
5 10 133 703 33 602] 123 25684 123 2186 | 242 5051 235 4160

Table 4: Overlap vs CM.

Table 4 indicates a fast decrease in the residual in the first few iterations. This can be

explained from the observation that the iterative process is somewhat related to coordinate

search for the least-squares problem, where the spans of the 4; act like coordinates. Notice

18

further, there is basically no difference in Table 4, where w=1, between partitioning the
columns and allowing overlaps if we count the number of iterations. We see a bigger
difference between overlapping and partitioning for w1 than for w=1. Perhaps this can be
explained from the observation that if the column a, of 4 is in group 4 and i+1, then for
w=1, component ¢ of ¥, is 0, but for w#1, this component can be nonzero. However, in
terms of equivalent point SOR (or point Gauss Seidel) corrections, we see that for the
linear problem it does not pay to expand the groups. On the other hand, in the following
three sets of results for the nonlinear problems and the nonlinear substitution technique,
we see that overlap may be more efficient in terms of fewer iterations and function calls.

Of course, this is hardly surprising, but the extra function calls used by nonlinear substitu-
tion make it less attractive than the inexact Gauss-Newton method, unless storage is the

main concern.

Problem 1
e=.1 £=.01 £=.001
CM ordering
Nonlinear substitution || 19/9 45/22 81/40
Inexact Gauss Newton || 11/19/2 | 21/51/4 | 26/70/5
Overlap
' Nonlinear substitution || 19/9 45/22 81/40
Inexact Gauss Newton || 11/19/2 | 21/51/4 | 26/70/5
Problem 2
e=.1 e=.01 £=.001
CM ordering
Nonlinear substitution | 23/11 63/31 105/52
Inexact Gauss Newton | 15/24/2 | 22/44/3 | 36/90/5
Overlap
Nonlinear substitution || 23/11 57/28 103/51
Inexact Gauss Newton || 15/22/2 | 29/61/4 | 36/84/4

Problem 3

19

e=.1 £=.01 £=.001
CM ordering
Nonlinear substitution || 27/13 57/28 115/57
Inexact Gauss Newton | 15/23/2 | 29/85/4 | 36/84/5
Overlap
Nonlinear substitution | 23/11 55 /27 101/50
Inexact Gauss Newton || 15/22/2 | 29/84/4 | 36/124/5

f/i/o ,f=number of function call, i=number of iterations, o=number of outer iterations

Table 5: Results‘for Nonlinear Test Problems

In the following tables, we compare the CM grouping strategy and a grouping strategy

so that the corresponding block in the normal equations is block tridiagonal. The strategies

are compared to point SOR with the original ordering. The entries for the grouping

schemes are the numbers of variables updated to achieve the specified accuracy. For point
SOR with the original ordering, they are the numbers of variable updates needed to achieve
the same accuracy as the grouping scheme. The arithmetic needed by CM and point SOR
with original ordering has the same cost. Naturally, the fridiagonal case costs more per
variable update. However, the dominating cost for all the methods is the two matrix-vector
products for each sweep through all the columns . The final line in the tables is the relative

efficiency in point SOR corrections of the two grouping strategies, i.e. for Problem 1 with

w=1.1and e=.1 it is (191/162)/(171/153)=1.05.

20

Point SOR with CM Ordering vs. Point SOR with Original Column Ordering
and

Tridiagonal Blocks vs. Point SOR with Original Ordering

Problem 1
e=.1
3] N .8 .9 1.0 1.1 1.2 1.3 14 1.5 1.6 1.7
CM 281 217 196 170 153 170 196 238 302 387 557

Point SOR 304 238 223 210 171 210 237 275 346 434 596

Tridiagonal 255 247 210 170 162 162 210 247 295 417 587

Point SOR 296 268 238 214 191 208 269 288 346 463 625

Rel. efl. 1.07 .99 1.0 102 1.05 104 1.06 1.01 1.02 .99 1.0
Problem 2
e=.1
W i .8 9 1.0 11 12 13 14 1.5 1.6 1.7
CM 797 584 559 505 505 559 658 851 1089 1381 1965

Point SOR BO2 634 568 552 560 664 807 985 1234 1535 2119

Tridiagonal B14 584 577 522 522 577 705 814 1106 1398 1882

Point SOR 828 664 630 o569 613 747 848 975 1277 1557 2164

Rel. eff. 1.01 1.05 1.12 1.0 1.06 1.09 .98 1.03 1.02 1.00 1.01
Problem 3
e=.1
) 7 .8 9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
CM 283 233 199 179 179 207 233 303 387 491 699

Point SOR 271 233 197 198 202 230 278 329 426 537 745

Tridiagonal 294 253 190 190 190 190 253 294 398 302 710

Point SOR 297 262 198 208 232 222 305 322 436 540 757

Rel. efl. 1.05 1.04 105 98 108 105 1.01 1.01 1.0 .88 1.00

21

Problem 4
e=.1
w N .8 9 1.0 1.1 1.2 1.3 14 1.5 1.6 1.7
CM 548 423 360 321 321 360 468 548 697 924 1261

Point SOR 521 431 341 339 360 387 529 612 762 984 1322
Tridiagonal 529 453 373 341 341 373 453 529 717 905 1281

Point SOR 513 474 365 343 360 461 513 597 799 988 1360

Rel. eff. 1.02 1.03 103 .95 .94 1.15 1.00 1.01 1.08 1.03 1.01

Problem 5
e=.1
W 1 .8 9 10 1.1 12 13 14 15 1.6 1.7
CM 876 778 667 602 602 602 602 654 778 973 1306

Point SOR 802 736 614 583 589 614 633 682 816 1016 1351

Tridiagonal B24 704 621 562 562 562 562 648 738 973 1294

Point SOR 805 715 612 583 588 613 631 700 814 1028 _ 1405

Rel. eff. 1.07 1.07 1.07 1.07 107 107 107 104 105 1.01 1.05

22

In the next group of tables, we tried point SOR in every case, but the orderings used
were the orderings suggested by the column grouping schemes discussed previously. Except
for Problem 5, it appears as though the alternate orderings are very good ones. The rows
labeled ‘Point SOR’ correspond to the original ordering.

Point SOR with CM Ordering vs. Point SOR with Original Ordering
and

Point SOR with Tridiagonal Ordering vs. Point SOR with Original Ordering

Problem 1
£=.001
w g .8 .9 1.0 1.1 12 13 14 15 1.6 1.7
CM 1598 1258 961 727 557 493 536 680 897 1173 1683
Point SOR 1870 1530 1273 1020 B850 680 610 762 977 1277 1747
Tri 1400 1145 935 765 635 465 550 672 890 1182 1692
Point SOR 1906 1530 1273 1020 903 735 677 777 982 1281 1756

Problem 2
£=.001 :
W 1 .8 9 1.0 1.1 1.2 1.3 14 1.5 1.6 1.7
CM 4162 3286 2603 2042 1606 1534 1898 2410 3066 4162 5815
Point SOR 4381 3505 2886 2311 1850 1875 2268 2751 3377 4389 6009
Tri 3734 3041 2457 1982 1581 1398 1873 2329 3041 4026 5778
Point SOR 4360 3563 2899 2317 2020 1783 2299 2743 3448 4344 6068

Problem 3
£=.001
3 N .8 .9 1.0 1.1 12 13 14 1.5 1.6 1.7
CM 2175 1947 1714 1506 1298 1115 927 832 1090 1447 2071
Point SOR 1762 1559 1450 1247 1141 1034 926 939 1224 1560 2184
Tri 1438 1230 1039 918 773 669 669 831 1085 1438 2062
Point SOR 1763 1560 1352 1349 1142 1038 933 972 1224 1560 2186

23

Problem 4
£=.001
3] N .8 9 1.0 1.1 1.2 13 14 15 16 1.7
CM 3476 2992 2536 2160 1864 1488 1220 1551 1972 2631 3744
Point SOR 2821 2316 1881 1676 1496 1308 1354 1725 2138 2797 3911
Tri 2521 2145 1769 1469 1205 1017 1205 1501 1957 2629 3725
Point SOR 2823 2388 1960 1685 1488 1309 1448 1703 2159 2851 3891

Problem 5

£=.001
@ 7 .8 9 10 11 12 13 14 15 16 1.7
CM 7602 6156 5040 4160 3418 2834 2306 2268 2674 3418 4688
Point SOR 7126 5744 4811 4133 3632 3456 3280 3095 2959 3663 4861
Tri 8306 7384 6574 5842 5138 4434 3758 3112 2702 3464 4962
Point SOR 7125 5744 4812 4133 3684 3456 3280 3095 2959 3663 4855

24

References

&. Bjork and T. Elfving (1979), Accelerated projection methods for computing pseudoin-
verse solutions of systems of linear equations, BIT, 19, pp.145-163.

T.F.Coleman (1984), Large Sparse Numerical Optimization, Lecture Notes in Computer
Science 165, Springer-Verlag, Berlin.

T.F.Coleman and J.J.Moré (1982), Software for estimating sparse Jacobian matrices, Cor-
nell Computer Science TR 82-502.

T.F.Coleman and J.J.Moré (1983), Estimation of sparse Jacobian matrices and graph color-
ing problems, SIAM J. Numer. Anal. 20, pp.187-209.

A. R. Curtis, M. J. D. Powell, and J. K. Reid (1974), On the estimation of sparse Jacobian
matrices, J. Inst. Math. Appl., 13, pp. 117-119.

R. S. Dembo, S. C. Eisenstat, and T. Steihaug (1982), Inexact Newton methods, SIAM J. of
Numer. Anal., 19, pp.400-408.

J. E. Dennis (1977), Nonlinear least squares and equations, The State of the Art in Numeri-
cal Analysis, D. Jacobs, ed., Academic Press, London, pp.269-312.

J. E. Dennis and R. B. Schnabel (1979), Least change secant updates for quasi-Newton
methods, SIAM Rev., 21, pp.443-459.

I.S. Duff and J. K. Reid (1979), Performance Evaluation of Codes for sparse matrices,in
Performance Evaluation of Numerical Software, L.D.Fosdick (ed.) North
Holland Publishing Company, pp.121-135.

S.C. Eisenstat, M.C. Gursky, M.H. Schultz, A.H. Sherman (1982), Yale Sparse Matrix
Package I: The symmetric Codes, International Journal for Numerical
Methods in Engineering, 18, pp.1141-1151.

T. Elfving (1980), Block iterative methods for consistent and inconsistent linear systems,
Numer. Math., 35, pp.1-12.

A. S. Householder (1964), The Theory of Matrices in Numerical Analysis, Blaisdell Publish-
ing Company, New York.

A. S. Householder and F. L. Bauer (1960), On certain iterative methods for solving linear
systems, Numer. Math., 2, pp.55-59.

H. B. Keller (1965), On the solution of singular and semidefinite linear systems by itera-
tion, SIAM J. of Numer. Math., 2, pp.281-290.

J. M. Ortega (1972), Numerical Analysis: A Second Course, Academic Press, New York.

J.K.Reid (1973), Least squares solution of sparse systems of non-linear equations by a
modified Marquardt algorithm, in Proc. NATO Conf. at Cambridge, July 1972,
North Holland, Amsterdam, pp.437-445.

T. Steihaug (1980), Quasi-Newton Methods for Large Scale Nonlinear Problems, Ph.D disser-
tation, SOM Technical Report #49, Yale University.

25

G. W. Stewart (1973), Introduction to Matriz Computations, Academic Press, New York.

D. M. Young (1971), Iterative Solution of Large Linear Systems, Academic Press, New
York.

